Multi-layered graph-based multi-document summarization model

نویسنده

  • Ercan Canhasi
چکیده

Multi-document summarization is a process of automatic generation of a compressed version of the given collection of documents. Recently, the graph-based models and ranking algorithms have been actively investigated by the extractive document summarization community. While most work to date focuses on homogeneous connecteness of sentences and heterogeneous connecteness of documents and sentences (e.g. sentence similarity weighted by document importance), in this paper we present a novel 3-layered graph model that emphasizes not only sentence and document level relations but also the influence of under sentence level relations (e.g. a part of sentence similarity).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Language Independent Algorithm for Single and Multiple Document Summarization

This paper describes a method for language independent extractive summarization that relies on iterative graph-based ranking algorithms. Through evaluations performed on a single-document summarization task for English and Portuguese, we show that the method performs equally well regardless of the language. Moreover, we show how a metasummarizer relying on a layered application of techniques fo...

متن کامل

An Exploration of Document Impact on Graph-Based Multi-Document Summarization

The graph-based ranking algorithm has been recently exploited for multi-document summarization by making only use of the sentence-to-sentence relationships in the documents, under the assumption that all the sentences are indistinguishable. However, given a document set to be summarized, different documents are usually not equally important, and moreover, different sentences in a specific docum...

متن کامل

Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning

Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...

متن کامل

Timestamped Graphs: Evolutionary Models of Text for Multi-Document Summarization

Current graph-based approaches to automatic text summarization, such as LexRank and TextRank, assume a static graph which does not model how the input texts emerge. A suitable evolutionary text graph model may impart a better understanding of the texts and improve the summarization process. We propose a timestamped graph (TSG) model that is motivated by human writing and reading processes, and ...

متن کامل

A Proposed Textual Graph Based Model for Arabic Multi-document Summarization

Text summarization task is still an active area of research in natural language preprocessing. Several methods that have been proposed in the literature to solve this task have presented mixed success. However, such methods developed in a multi-document Arabic text summarization are based on extractive summary and none of them is oriented to abstractive summary. This is due to the challenges of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1405.7975  شماره 

صفحات  -

تاریخ انتشار 2014